EE 330 Lecture 16

Devices in Semiconductor Processes

MOSFETs

Fall 2025 Exam Schedule

Exam 1 Friday Sept 26

Exam 2 Friday October 24

Exam 3 Friday Nov 21

Final Exam Monday Dec 15 12:00 - 2:00 PM

Diode Models

Which model should be used?

The simplest model that will give acceptable results in the analysis of a circuit

Analysis of Nonlinear Circuits

(Circuits with one or more nonlinear devices)

What analysis tools or methods can be used?

KCL?

Nodal Analysis?

KVL?

Mesh Analysis?

Superposition?

Two-Port Subcircuits?

Voltage Divider?

Passing Current?

Current Divider?

Blocking Current?

Thevenin and Norton Equivalent Circuits?

- How are piecewise models accommodated?
- Will address the issue of how to rigorously analyze nonlinear circuits with piecewise models later

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Observations:

- Analysis generally simplified dramatically (particularly if piecewise model is linear)
- Approach applicable to wide variety of nonlinear devices
- Closed-form solutions give insight into performance of circuit
- Usually much faster than solving the nonlinear circuit directly
- Wrong guesses in the state of the device do not compromise solution (verification will fail)
- Helps to guess right the first time
- Detailed model is often not necessary with most nonlinear devices
- Particularly useful if piecewise model is PWL (but not necessary)
- o For <u>practical</u> circuits, the simplified approach usually applies

Key Concept For Analyzing Circuits with Nonlinear Devices

Use of <u>Piecewise</u> Models for Nonlinear Devices when Analyzing Electronic Circuits

Single Nonlinear Device

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Process:

Multiple Nonlinear Devices

- 1. Guess state of each device (may be multiple combinations)
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify models (if necessary)

Analytical solutions of circuits with multiple nonlinear devices are often impossible to obtain if detailed non-piecewise nonlinear models are used

Diode Breakdown

- Diodes will "break down" if a large reverse bias is applied
- Unless current is limited, reverse breakdown is destructive
- Breakdown is very sharp
- For many signal diodes, V_{BR} is in the -100V to -1000V range
- Relatively easy to design circuits so that with correct diodes, breakdown will not occur
- Zener diodes have a relatively small breakdown and current is intentionally limited to use this breakdown to build voltage references

Parallel Plate Capacitors

 $A = area of intersection of A_1 & A_2$

One (top) plate intentionally sized smaller to determine C

$$C = \frac{\in A}{d}$$

Review from Last Lecture

Fringe Capacitors

$$\mathbf{C} = \frac{\mathbf{\epsilon} \, \mathbf{A}}{\mathsf{d}}$$

A is the area where the two plates are parallel Only a single layer is needed to make fringe capacitors

Review from Last Lecture

Capacitance

€ is dielectric constant

$$C = \frac{C_{jo}A}{\left(1 - \frac{V_D}{I}\right)^n} \qquad \text{for } V_{FB} < \frac{\phi_B}{2}$$

Note: d is voltage dependent

- -capacitance is voltage dependent
- -usually parasitic caps
- -varicaps or varactor diodes exploit voltage dep. of C

C_{j0} is the zero—bias junction capacitance density

Model parameters $\{C_{jo}, n, \phi_B\}$ Design parameters $\{A\}$

$$\phi_{\text{B}}\cong 0.6\text{V}$$

$$m n \simeq 0.5$$

C_{io} highly process dependent around 500aF/µm²

Capacitance

$$C = \frac{C_{jo}A}{\left(1 - \frac{V_{D}}{\omega_{D}}\right)^{n}} \qquad \text{for } V_{FB} < \frac{\phi_{E}}{2}$$

Voltage dependence is substantial

 $\phi_{\rm B} \simeq 0.6 {
m V} \quad {
m n} \simeq 0.5$

Example:

Determine the 3dB frequency of the lowpass filter shown if V_{CONT} =0V and if V_{CONT} =-2V. Assume R=10M, the diode junction area is 100µm², and the diode is a p+:n-well diode in the process attached.

$$C = \frac{C_{jo}A}{\left(1 - \frac{V_D}{\phi_B}\right)^n} \qquad \text{for } V_{FB} < \frac{\phi_B}{2}$$

With
$$V_D=0$$
 $C_1=37aF \mu m^{-2} x 100 \mu m^2 = 3.7fF$

With
$$V_D = -2V$$
 $C_2 = \frac{C_{jo}A}{\left(1 - \frac{V_D}{\phi_B}\right)^n} = \frac{3.7fF}{\left(1 + \frac{2V}{0.6V}\right)^{0.5}} = 1.78fF$

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	МЗ	N W	UNITS
Area (substrate)	425	731	84		27	12	7	⁻ 37	aF/um^2
Area (N+active)			2434		35	16	11		aF/um^2
Area (<mark>P+active)</mark>			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (<u>N+active)</u>			232						aF/um
Overlap (<u>P+active)</u>			312						aF/um

Example:

Determine the 3dB frequency of the lowpass filter shown if V_{CONT} =0V and if V_{CONT} =-2V. Assume R=10M, the diode junction area is 100µm², and the diode is a p+:n-well diode in the process attached.

BW =
$$\frac{1}{RC}$$
 BW₁= $\frac{1}{RC_1}$ = $\frac{1}{10M•3.7fF}$ =27M rad/sec = 4.3MHz
BW₂= $\frac{1}{RC_2}$ = $\frac{1}{10M•1.78fF}$ =56M rad/sec = 8.9MHz

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor

BJT

Summary of Existing Models (for n-channel)

1. Switch-Level model

2. Improved switch-level model

Switch closed for $|V_{GS}|$ = large Switch open for $|V_{GS}|$ = small

Limitations of Existing MOSFET Models

For minimum-sized devices in a 0.5 μ process with $V_{DD}=5V$

$$\textbf{C}_{\text{GS}}\cong\textbf{1.5fF}$$

$$R_{sw} \cong {2K\Omega \ n-channel \choose 6K\Omega \ p-channel}$$

What is Y when A=B=VDD

What is R_{SW} if MOSFET is not minimum sized?

What is power dissipation if A is stuck at an intermediate voltage?

Better Model of MOSFET is Needed!

n-Channel MOSFET

n-Channel MOSFET

n-Channel MOSFET

- In what follows assume all pn junctions reverse biased (almost always used this way)
- Extremely small reverse bias pn junction current can be neglected in most applications

 $\begin{array}{c} \text{Apply small V_{GS}} \\ \text{(V_{DS} and V_{BS} assumed to be small)} \\ \text{Depletion region electrically induced in channel} \\ \text{Termed "cutoff" region of operation} \end{array}$

Increase V_{GS} (V_{DS} and V_{BS} assumed to be small)

Depletion region in channel becomes larger

Model in Cutoff Region

Increase V_{GS} more

Inversion layer forms in channel
Inversion layer will support current flow from D to S
Channel behaves as thin-film resistor

$$I_DR_{CH}=V_{DS}$$
 $I_G=0$
 $I_B=0$

Triode Region of Operation

For V_{DS} small

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{TH}) \mu C_{OX}}$$

$$I_{D} = \mu C_{OX} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}$$

$$I_{G} = I_{B} = 0$$

Behaves as a resistor between drain and source

Model in Deep Triode Region

Triode Region of Operation

For V_{DS} small

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{TH}) \mu C_{OX}}$$

Resistor is controlled by the voltage V_{GS} Termed a "Voltage Controlled Resistor" (VCR)

 $V_{GC}(x)$ approx. constant for small V_{DS}

 $Increase\ V_{GS}\ more\ (\text{with}\ V_{DS}\ \text{and}\ V_{BS}\ \text{still}\ \text{small})$

Inversion layer in channel thickens R_{CH} will decrease

Termed "ohmic" or "triode" region of operation

$$I_DR_{CH}=V_{DS}$$

 $I_G=0$
 $I_B=0$

Increase V_{DS}

 $V_{GC}(x)$ changes with x for larger V_{DS}

Inversion layer thins near drain

I_D no longer linearly dependent upon V_{DS}

Still termed "ohmic" or "triode" region of operation

 $I_D =$

 $I_{G}=0$

 $I_B = 0$

Triode Region of Operation

For V_{DS} larger

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{TH}) \mu C_{OX}}$$

$$I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$$

$$I_{G} = I_{B} = 0$$

Increase V_{DS} even more

 $V_{GC}(L) = V_{TH}$ when channel saturates

Inversion layer disappears near drain Termed "saturation" region of operation Saturation first occurs when $V_{DS}=V_{GS}-V_{TH}$

$$I_D = 7$$

$$I_G = 0$$

$$I_B = C$$

Saturation Region of Operation

For V_{DS} at onset of saturation —

$$I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$$

or equivalently

$$I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{GS} - V_{TH}}{2} \right) \left(V_{GS} - V_{TH} \right)$$

or equivalently

$$I_{D} = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{TH})^{2}$$
$$I_{G} = I_{B} = 0$$

Increase V_{DS} even more (beyond V_{GS} - V_{TH})

Nothing much changes !!

Termed "saturation" region of operation

Saturation Region of Operation

For V_{DS} in Saturation

$$I_D = \frac{\mu C_{OX} W}{2L} \left(V_{GS} - V_{TH} \right)^2$$

$$I_G = I_B = 0$$

Model in Saturation Region

Model Summary

n-channel MOSFET

Notation change: $V_T = V_{TH}$, don't confuse V_T with $V_t = kT/q$

$$\begin{split} I_{D} = & \begin{cases} 0 & V_{GS} \leq V_{TH} \\ \mu C_{OX} \frac{W}{L} \bigg(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \bigg) V_{DS} & V_{GS} \geq V_{TH} & V_{DS} < V_{GS} - V_{TH} \\ \mu C_{OX} \frac{W}{2L} \big(V_{GS} - V_{TH} \big)^{2} & V_{GS} \geq V_{TH} & V_{DS} \geq V_{GS} - V_{TH} \\ I_{G} = I_{B} = 0 & V_{GS} = 0 \end{split}$$

$$V_{GS} \leq V_{TH}$$
 Cutoff $V > V \quad V \quad < V \quad -V$ Triode

$$V_{GS} \geq V_{TH} \quad V_{DS} \geq V_{GS} - V_{TH}$$
 Saturation

$$I_{G} = I_{B} = 0$$

Model Parameters: $\{\mu, V_{TH}, C_{OX}\}$ Design Parameters : $\{W, L\}$

This is a piecewise model (not piecewise linear though)

Piecewise model is continuous at transition between regions

(Deep triode special case of triode where
$$V_{DS}$$
 is small $R_{CH} = \frac{L}{W} \frac{1}{\left(V_{GS} - V_{TH}\right) \mu C_{OX}}$)

Note: This is the third model we have introduced for the MOSFET

Model Summary

n-channel MOSFET

Observations about this model (developed for V_{BS}=0):

$$I_{D} = f_{1}(V_{GS}, V_{DS})$$

$$I_{G} = f_{2}(V_{GS}, V_{DS})$$

$$I_{B} = f_{3}(V_{GS}, V_{DS})$$

This is a nonlinear model characterized by the functions f_1 , f_2 , and f_3 where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the drain currents are the dependent variables

General Nonlinear Models

I₁ and I₂ are 3-dimensional relationships which are often difficult to visualize

Two-dimensional representation of 3-dimensional relationships

Graphical Representation of MOS Model

 $I_G = I_B = 0$

Parabola separated triode and saturation regions and corresponds to $V_{DS}=V_{GS}-V_{TH}$

PMOS and **NMOS** Models

- Functional form identical, sign changes and parameter values different
- Will give details about p-channel model later

Stay Safe and Stay Healthy!

End of Lecture 16